1 Central Limit Theorem Proof

The central limit theorem (CLT) posits that means are approximately nor-
mally distributed for large sample sizes. This is crucial for many statistical
applications in many fields of research that deal with randomness. Any
measure that we are interested in that has inherent noise (blood measures,
neurophysiological activity, social behavior) can be analyzed by knowing how
a mean of a sample of such measures is distributed.

I couldn’t find a self-contained proof of the central limit theorem. So I
made one myself. Maybe it helps someone else at some point. I took parts
from various sources, mostly from

e https://sas.uwaterloo.ca/ dlmcleis/s901/chapt6.pdf and
e https://www.youtube.com/c/papaflammy/.

So how does the CLT look like? It requires multiple independently and
identically distributed (iid.) measures X; with ¢ € 1..n. The iid. assumption
relates to a situation in which the observations X; come from the same ran-
domness mechanism (e.g., many participants receiving the same medication,
it is not the case that one gets a higher dosage than another unless that is
the random process we are interested in) and are independent draws from
this mechanism. Then, if we were to repeat this experiment — draw n obser-
vations and compute the mean — over and over again, the computed means
will be approximately normally distributed.

Theorem 1 (Central Limit Theorem). Let Xy, Xo, ..., X, iid. as X. As-
sume that all moments are finite and, in particular, assume without loss of

generality that E[X] =0 and Var[X] = 1. Let Z, = \/Lﬁ > X;. Then
i=1

lim Z, ~ N(0,1).
n—o0
We will first look at a short overview of the proof. In this, we will use
technicalities about characteristic functions, which I explain later. If you are
a mathematician, this structure may appear usual to you because most of
the time, people write all the required lemmas before the important theorem.
But here, I focus on the overview first and only then add the details.
To start with, note that we multiply the sum of X;s by ‘/Tﬁ = \% to make
n
Z, have variance 1.



Next, we need so-called characteristic functions as the main work-horse
of the proof. The characteristic function of a random variable X is

Ux(t) = E[e"],

which describes the moments of X. Remember that the series definition of e
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With this, we can see that the characteristic function tells us the m-th mo-
ment of the random variable X by taking the m-th derivative of ¥x(t/i) at
t = 0. Remember that the Oth moment is constant 1, the 1st moment is
the expected value of the random variable, the 2nd moment is related to the

variance, the 3rd to the skewness etc.

dm _ d™ oy
a0 = b )
t=0 t=0
am _[(tX)Y  (X)'  (tX)*  (tX)3
=—F
dtm [0! LT IR R I
_d™ [t°E[XY] N HE[X] N t?E[X?] N B3 E[X?] N
Codtm | 0! 1! 2! 3! L,
= E[X™]

This is so because all terms with a lower exponent than m vanish due to the
derivatives and all terms with a higher exponent are set to zero by ¢t = 0.

The core idea of the proof is showing that the moments vanish when tak-
ing the mean over multiple independent draws of the same random variable.
In fact, all moments but the Oth and the 1st (expected value) vanish but the
higher the moment the faster it vanishes. Thus, the shape of the distribution
of that random variable (determined by its moments) gets washed out and
approaches that of a normal one.

X

Proof. Z, is a sum of scaled random variables The sum of multiple
random variables has a characteristic function that is the product of indi-
vidual characteristic functions (see Lemma 2). Thus, z, has the following
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characteristic function.
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We consider the limit of this characteristic function as n — oco.
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The first part produces e and the second part vanishes as n approaches

infinity because
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As a result, what is left over is the characteristic function

lim ¢y, (1) = e/

n—oo



which turns out to be that of the standard normal distribution (Lemma 3).
Since characteristic functions uniquely determine the probability distribution
(Lemma 4), Z,, approaches no other but the normal distribution as n — oo.

O

What is left to show is that

e the product of characteristic functions is the characteristic function of
the sum of the corresponding random variables,

42
o ¢t

and

/2 is the characteristic function of the standard normal distribution,

e that the characteristic function uniquely determines the distribution of
a random variable.



1.1 Characteristic Functions

Lemma 2 (Sum of random variables, product of characteristic functions).
The sum of two random variables Z = X +Y has the characteristic func-
tion of the product of the two wvariable’s characteristic functions, 1z(t) =

Ux ()ey (1)
Proof.



Lemma 3 (Characteristic functions of the standard normal distribution). A

random variable X with the standard normal probability distribution f(x) =
1 —%z2

Var ©
Proof.

has the characteristic function x(t) = e7/2.
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The integral at the end is equal to 1 because we can substitute y = x —1t,
d

=1 <+ dz=dy.
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Lemma 4 (Probability distributions are uniquely determined by their char-
acteristic function). Let 1x(t) be the characteristic function of X, then the
probability mass of X in the interval |a,b] is recovered by

1 6—zta o e—ztb
lim — / ()t = Pla < X <) +
1

This lemma is not as straight forward to proof as the others. It makes
intuitive sense that all moments (from 0 to infinity) together fully determine
a random variable. On a high level, we show this by showing how to recover
the exact distribution P(X) from the characteristic function ¢ x(t). This
requires a relatively complicated integral. We will again show the overview
of the proof first and assume same technical lemmas in doing so. After, we
proof the details in further lemmas.

Proof. Using €' = cos(tc) + i - sin(tc), the two exponential terms in the
integral can be rewritten as

/ ztc _ /T COS tC _|_ 7 - sHl(tc) dt + /0 COS(tC) — - SiIl(tC) dt
0

-7 21t

_ /T cos(tc) —i— Q- sm(tc) it + /T cos(tc) + z (—1) sin(tc) "
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cos(tc) cos(tc) sin(tc)  sin(tc)

21t + 2t * 2t

dt

Coming back to the equation we want to prove here, we replace the char-



acteristic function by its definition and obtain:
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Where we the solution to the inner integral from Lemma 5.

With that, we have shown that the clever computation retrieves the prob-
ability mass for any interval. This is done by ensuring that all probabilities
before a and after b are set to 0, those within the interval are preserved as
P(a < X < b) and the probabilities of the edges are halved (for compati-
bility). Therefore, characteristic functions can be translated into probability

functions and these two functions therefore have a one-to-one relationship.
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1.2 Technical Lemmas

How does the integral in Lemma 4 solve exactly in the way that allows us to
recover the probabilities? For this, we need more technical results.

Lemma 5 (Limit of the intregral of sin(tc)/t).

-7 <0
_ T sin(tc) > Jore
lim ——dt =4 +5, forc>0
T—o00 0 t

0, forc=0

Proof. For this proof, we need the Laplace transform of functions g(t).

Llo}s) = [ gl

We consider the special case of functions g(t) = h(t)/t.
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We now consider g(t) = h(t)/t = sin(t)/t where we solve the Laplace
transform L(sin(¢)) in Lemma 6.



= tan ' (r) )
T -1

= — — t
5 ~ tan (s)

With this, we can solve the initial integral. We get rid fo the constant
c in sin(ct) with a change of variables: We substitute u = tc¢, t = u/c and
du = ¢ - dt. We also add the vanishing term e** with the limit of s — oo to
write it as a Laplace transform.

T .- T/c .
lim / —Smitc)dt: lim / sin(w) ¢
0 0

T—00 T—o0 u Cc
/ > sin(u)
= du
0 u
= lim we‘“du
s—0 s U
=lim L {sm ) } (s)
s—0 u
= 151—% L{sin(u)} (r)dr

We still need to proof the solution to the Laplace transform (Lemma 6) and
the integral (Lemma 7) to arrive at the desired statement.
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Since we consider the limit to infinity, this constant simply drops if it is
positive which we assume for now (¢ > 0). For negative constants, ¢ < 0, the
integral goes from —oo to 0 and the proof can be written analogously with
an additional minus in the end. For ¢ = 0, the integral is simply 0. [

Lemma 6 (Laplace transform of sin(?)).

1
1+ s2

L{sin(t)}(s) =

Proof.

= e —
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Now we can solve the Laplace transform of sin(t) using the equality

e —e " cos(t) +isin(t) — cos(—t) —isin(—t)  2isin(t) . 0)
= = = sin(t).
2it 21 21
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Lemma 7 (Derivative of the inverse tangens).

1 -1
/ T, S2d$ = tan~ (s)

Proof. The derivative of the tangens is

d d sin(s)
ds tan(s) = ds cos(s)
_ sin’(s) cos(s) — sin(s) cos'(s)
cos?(s)
~ cos?(s) + sin®(s)
cos?(s)
= 1+ tan?(s),

and the derivative of the inverse therefore is

~ tan/(tan"'(s))

B 1

1+ tan?(tan—'(s))
1

1+ s%
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